Références

- ADAM, J. & ROGERS, M. D. (1959). Acta Cryst. 12, 951.
- BAYER, G. (1962). Ber. dtsch. Keram. Ges. 39, 535.
- BAYER, G. (1969). Fortschr. Miner. 46 (1), 41.
- GALY, J. & MEUNIER, G. (1969). C.R. Acad. Sci. Paris, 268, 1249.
- HARARI, A., BOCQUET, J. P. & COLLONGUES, R. (1967). C.R. Acad. Sci. Paris, 267, 1316.
- International Tables for X-ray Crystallography (1965). Vol. III. Birmingham: Kynoch Press.
- LECIEJEWICZ, J. (1961). Z. Kristallogr. 116, 345.

- LEVY, G. R. & PEYRONEL, G. (1935). Z. Kristallogr. 92A, 190.
- LINDQUIST, O. (1968). Acta Chem. Scand. 22, 977.
- McCullough, J. D. & Trueblood, K. N. (1959). Acta Cryst. 12, 507.
- MOORE, W. J. & PAULING, L. (1941). J. Amer. Chem. Soc. 63, 1392.
- NEWNHAM, R. E. (1967). J. Amer. Chem. Soc. 4, 50.
- PAULING, L. & SHAPPELL, M. D. (1930). Z. Kristallogr. 75, 128.
- SORRELL, C. A. (1968). J. Amer. Ceram. Soc. 51 (12), 674. ZACHARIASEN, (1928). Z. Kristallogr. 67, 455.

Acta Cryst. (1971). B27, 608

A Propos de la Cliffordite UTe₃O₈. Le Système UO₃-TeO₂ à 700°C. Structure Cristalline de UTe₃O₉

PAR JEAN GALY ET GEORGES MEUNIER

Service de Chimie Minérale Structurale de la Faculté des Sciences de Bordeaux associé au C.N.R.S., 351, cours de la Libération, 33-Talence, France

(Reçu le 11 juin 1970)

Two phases have been found in the UO₃-TeO₂ system at 700°C: UTeO₅ and UTe₃O₉. UTeO₅ is orthorhombic with space group *Pbc2*₁ or *Pbcm* and parameters a=5.363, b=10.611, c=7.862 Å (Z=4). UTe₃O₉ is cubic with space group *Pa3* and a=11.370 Å (Z=8). The structure of UTe₃O₉ has been determined. The tellurium and uranium atoms have C.N. 4 and 8 (with a linear UO₂²⁺ group). The structure appears to be identical with that of the cliffordite previously reported with formula UTe₃O₈.

Nous avons entrepris au laboratoire l'étude systématique de nouvelles familles de composés oxygénés du tellure(IV). C'est ainsi qu'à été préparée une série de composés originaux de formule MTe₃O₈ (M=Ti, Zr, Hf, Sn) dont la structure a été déterminée (Galy & Meunier, 1969; Meunier & Galy, 1971). Cette étude nous a amené à nous intéresser au système UO₂-TeO₂. En fait l'oxyde UO₂ réduit TeO₂ avec formation de UO₃ et de tellure élémentaire. Cette constatation nous a conduit à l'étude du système UO₃-TeO₂.

Alors que nos travaux étaient déjà assez avancés, nous avons eu connaissance d'une étude structurale de Fischer, Schlatti & Zemann (1969), intitulée: *The structure type of cliffordite* UTe₃O₈. La cliffordite est un minerai existant dans les mines de San Miguel près de Moctezuma au Mexique; il a été découvert et étudié par Gaines (1969), qui lui a attribué la formule UTe₃O₈, soit U⁴⁺Te⁴₃+O₈. Cet auteur affirmait avoir obtenu des monocristaux de cliffordite par synthèse sous pression. C'est sur un tel monocristal que Fischer *et al.* ont précisément effectué l'étude cristallographique annoncée.

Khodadad (1962) avait préparé par action de l'acétate d'uranyle sur une solution chlorhydrique de TeO_2 une tellurate d'uranyle (UO₂)TeO₃, correspondant donc à la formule brute U⁶⁺Te⁴⁺O₅. Il donnait les raies principales du spectre Debye-Scherrer et en étudiait la décomposition thermique.

Etude chimique et radiocristallographique du système UO₃-TeO₂

L'oxyde de tellure TeO_2 de départ est obtenu par décomposition de l'acide orthotellurique sous courant d'oxygène à 600°C. UO₃ est un produit commercial.

Les réactions de préparation sont effectuées en tube scellé de vycor à 700 °C. Une étude systématique par diffraction X a permis d'isoler deux phases correspondant à des rapports TeO_2/UO_3 égaux à 1 et 3, soit $UTeO_5$ et UTe_3O_9 .

Les spectres X de ces phases sont donnés à la Fig. 1.

La phase UTeO₅

UTeO₅ est une poudre cristalline de couleur jaune. Un monocristal de cette phase a été obtenu par fusion à 800°C suivie d'un refroidissement lent. L'étude radiocristallographique effectuée à l'aide de chambres de Bragg et de Weissenberg a permis d'en préciser les caractères cristallographiques. UTeO₅ cristallise dans le système orthorhombique. Les paramètres, affinés par indexation d'un diffractogramme préalablement calibré avec la poudre de germanium, sont: $a=5,363\pm0,003$, $b=10,611\pm0,004$ et $c=7,862\pm0,003$ Å. Les extinctions systématiques suivantes ont été relevées: $0kl \ k \neq 2n$, $h0l \ l \neq 2n$. Elles conduisent au groupe spatial $Pbc2_1$ (C_{2v}^5) ou $Pbcm \ (D_{2h}^{11})$. Le spectre X de UTeO₅, dont les raies les plus fortes coïncident effectivement avec celles données par Khodadad, est alors parfaitement indexé (Tableau 1). La densité observée ($d \exp = 6,91 \pm 0,04$) est en excellent accord avec la densité calculée ($d_x = 6,91$) pour 4 motifs UTeO₅ par maille.

La phase UTe₃O₉

Comme UTeO₅, UTe₃O₉ se présente sous forme d'une poudre microcristalline de couleur jaune. Son spectre X est donné à la Fig. 1. Nous avons d'emblée été frappés par sa ressemblance avec celui de TiTe₃O₈, les raies les plus intenses coïncidant pratiquement avec celles de cette phase (Galy & Meunier, 1969; Meunier & Galy, 1971). TiTe₃O₈ cristallise dans le système cubique centré (groupe spatial *Ia*3) avec le paramètre a=10,956 Å. Nous avons pu indexer l'ensemble des raies du spectre de UTe₃O₉ dans le système cubique simple avec un paramètre $a=11,370\pm0,003$ Å. Nous avons adopté comme groupe spatial de UTe_3O_9 celui proposé par Gaines pour la phase de formulation UTe_3O_8 , soit *Pa3* (T_h^6). Dans cette hypothèse le spectre X de UTe_3O_9 s'indexe en effet parfaitement (Tableau 2).

La densité observée ($d \exp = 6.84 \pm 0.04$) implique 8 motifs UTe₃O₉ par maille, elle est en bon accord avec la densité calculée ($d_x = 6.91$).

L'ensemble des constantes cristallographiques est donné au Tableau 3.

Etude chimique, radiocristallographique et thermogravimétrique du système UO₂-TeO₂

Nous avons repris l'étude du système UO_2 -Te O_2 en raison de l'analogie du spectre de diffraction X de UTe₃O₉ avec celui donné par Gaines (1969) pour la phase formulée UTe₃O₈.

Le dioxyde d'uranium est obtenu par réduction de l'oxyde UO₃ par l'uranium métallique à 900 °C (Perio, 1955).

Une mélange UO₂+3TeO₂ correspondant précisé-

					·····	·····	
h k l	d _{obs.}	d _{calc.}	I/I.	hkl	d _{obs.}	d _{calc.}	I/I.
100	5,35	5,36	40	310	1,761	1,761	< 2
020	5,06	5,08	15	124)	1 7 2 4	(1,735	20
110	4,74	4,75	35	143)	,,,,, <u>+</u>	(1,727	20
021	4,27	4,27	5	311	1,719	1,718	5
1 1 1 1	4,06	4,06	8	242	1,670	1,670	10
0 0 2	3,930	3,931	10	302	1,628	1,627	< 2
120	3,688	3,688	100	134)		(1,621	
121	3,339	3,339	< 2	250)	1 610	(1,620	5
102	3,172	3,171	60	160}	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(1,615	
022	3,109	3,109	80	312)		(1,607	
112	3,029	3,027	20	204)		(1,585	
130	2,864	2,864	10	161)	1,584	(1,582	< 2
1 3 1)		(2,691		330)		(1,581	
122	2,689	(2,690	25	062)		(1,555	
200)		(2,682		044)		(1,555	
210	2,595	2,593	10	331	1,550	{1,550	25
040	2,539	2,540	20	322)		{1,550	
211	2,462	2,462	5	153)		(1,538	
220	2,372	2,371	20	224		(1,513	
140)	2,295	2,296	5	243	1,510	(1,508	5
113)	-1-/5	(2,294		025)		(1,502	
202	2,215	2,215	10	332		(1,467	
141	2,204	2,204	< 2	340	1,462	1,462	1 10
212	2,164	2,164	10	313)		(1,46)	
123	2,135	(2,136	< 2	262		1,345	
042)	-,	(2,134	-	244		1,345	
230	2,102	2,102	10	215	1,341	1,344	< 2
231	2.031	(2,031	20	350		(1,342	
222)		(2,03)		400		(1,341	
142	1,980	1,982	30	045)		(1,337	
004	1,966	1,966	20	314			
232		{1,854	ł		1,310		5
151		{1,847	1	225		1,310	
104	1,843	(1,846	15	600)	1	(1,310	1
240		1,844		145	1,297	1,291	< 2
213)		(1,843		420		1,290	ļ
114	1,816	1,816	< 2	1			1
241	1,789	1,795	10				
300)		(1,788			}		
1			1	1			

Tableau 1. Spectre X de UTeO₅

Fig. 1. Spectre X de UO₃, UTeO₅, UTe₃O₉, TiTe₃O₈ et TeO₂ (chambre de Guinier - Cu $K\alpha_1$).

Fig. 2. Photographie du tube de vycor après réaction.

Fig. 3. Spectre X de UTe₃O₉; partie A du tube; UTeO₅; partie B du tube; tellure métallique.

ment à la formule UTe₃O₈, de couleur brune, a été chauffé en tube scellé de vycor vers 700°C. La partie du tube contenant le mélange pulvérulent, appelée A, était placée dans la zone de température maximale du four. On assiste à un phénomène de 'transport' vers la région plus froide illustré à la Fig. 2. Dans la partie Adu tube, on recueille une poudre microcristalline de couleur jaune alors qu'à l'autre extrêmité, dénommée B, se forme un dépôt d'aspect métallique.

L'analyse radiocristallographique montre que sur la 'paroi chaude' la poudre jaune obtenue est un mélange de UTeO₅ et UTe₃O₉ [spectres X à la Fig. 3 (Cu $K\alpha$)]; c'est le tellure métallique qui se dépose sur la 'paroi froide'.

L'équation de cette réaction d'oxydo-réduction s'écrit:

$$4UO_2 + 12TeO_2 \rightarrow 3UTe_3O_9 + UTeO_5 + 2Te \nearrow$$

Nous avons voulu vérifier par analyse thermogravimétrique qu'il était possible d'obtenir UTe_3O_9 par oxydation du mélange $UO_2 + 3TeO_2$. Nous avons utilisé une thermobalance Adamel fonctionnant sous pression

Fig. 4. Thermogramme de l'oxydation du mélange $UO_2 + 3 \text{ Te}O_2$.

Tableau 2. Indexation, distances rét	iculaires et facteurs de structure o	bservés et calc	ulés de UTe ₃ O ₉
--------------------------------------	--------------------------------------	-----------------	---

h k l	d _{obs.}	d _{calc.}	Fo	F _c	hkl	d _{obs.}	d _{calc.}	Fo	Fc
$ \begin{array}{c} h \ k \ 1 \\ \hline 2 \ 0 \ 0 \\ 2 \ 1 \ 1 \\ 2 \ 2 \ 0 \\ 2 \ 2 \ 1 \\ 2 \ 2 \ 0 \\ 2 \ 2 \ 1 \\ 2 \ 2 \ 0 \\ 2 \ 2 \ 1 \\ 1 \\ 2 \ 2 \ 0 \\ 2 \ 2 \\ 1 \\ 1 \\ 2 \ 2 \\ 2 \\ 2 \\ 3 \ 0 \\ 4 \ 1 \\ 1 \\ 2 \ 2 \\ 4 \\ 1 \\ 1 \\ 4 \ 2 \\ 2 \\ 4 \\ 3 \\ 1 \\ 2 \ 5 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2$	dobs. 5,68 4,65 4,02 3,792 3,284 3,154 3,039 2,845 2,759 2,681 2,542 2,480 2,321 2,273 2,230 2,111 2,010 1,979 1,950 1,894 1,844 1,798 1,776	d calc. 5,69 4,64 4,02 3,790 3,282 3,153 3,039 2,843 2,758 2,680 2,542 2,481 2,274 2,230 2,111 2,010 1,979 1,950 1,895 1,844 1,798 1,776	F ₀ 614 944 1344 883 3428 1077 1112 2232 2032 1195 1697 1033 1416 759 1084 1035 3367 1340 1365 2292 1519 2922 2006	F _c 719 960 1564 943 3699 1008 1109 2459 2119 1163 1897 1061 1642 698 1019 1018 3657 1305 1168 2554 1444 3146 2208	h k 1 6 4 2 7 2 2) 5 4 4) 6 5 0) 6 4 3) 6 5 1) 7 3 2) 8 00 8 00 8 7 0) 8 1 0) 6 5 2) 8 1 1) 7 4 3) 6 6 2 6 5 3 6 6 2) 8 3 1) 7 4 3) 6 6 2 8 4 0 8 4 1) 6 6 3) 7 4 4) 8 4 2	d _{obs.} 1,519 1,506 1,456 1,444 1,421 1,410 1,400 1,379 1,359 1,340 1,322 1,304 1,296 J,271 1,263 1,240	<pre>dcalc. 1,519 1,506 1,456 1,444 1,421 1,410 1,400 1,379 1,359 1,340 1,322 1,304 1,296 1,271 1,263 1,241</pre>	F ₀ 3148 1825 1567 1409 1189 1246 1739 3305 1293 2248 1930 1888 1501 1957 1271 3751	Fc 3382 1884 1541 1285 1071 1274 1723 3507 1258 2148 1973 1922 1344 1833 1333 3956
420	2,542	2,542	1697	1897	$ \begin{bmatrix} 8 & 1 & 1 \\ 7 & 4 & 1 \\ 7 & 5 & 4 \end{bmatrix} $	1,400	1,400	1739	1723
422 430 431	2,321 2,273 2,230	2,274	759	698 1019	820) 644	1,379	1,379	3305	3507
250)	2,111	2,111	1035	1018	653	1,359	1,359	1293	1258
4 4 0	2,010	2,010	3367	3657	822)	1,340	1,340	2248	2148
441) 522)	1,979	1,979	1340	1305	831) 743)	1,322	1,322	1930	1973
433	1,950	1,950	1365	1168	662	1,304	1,304	1888	1922
6005	1,894	1,895	2292	2554	832)	1,296	1,296	1501	1344
532	1,844	1,844	1519	1444	840 841)	.1,271	1,271	1957	1833
620 621)	1,798	1,798	2922	3146	663) 744)	1,263	1,263	1271	1333
450	1,776	1,776	2006	2208	842	1,240	1,24]	3751	3956
541	1,754	1,754	1150	1141	290)	1,233	1,233	1339	1369
622	1,715	1,714	2154	3489 2212	921	1,226	1,226	1358	1442
631	1,676	1,676	1410	1370	664	1,212	1,212	2359	2431
4 4 4 6 3 2	1,641	1,641	1651 2608	1760 2762	850) 922)	1,205	1,205	2180	2258
543 551)	1,608	1,608	1061	988	762) 852	1,179	1,179	1 322	1342
771)	1,592	1,592	1462	1668	932) 763)	1,173	1,173	1329	1292
270	1,561	1,562	1140	965	844	1,160	1,160	1555	1682
641) 633)					490)	1,154	1,154	988	895
552	1,548	1,547	1045	869					

JEAN GALY ET GEORGES MEUNIER

hkl	d _{obs.}	d _{calc.}	Fo	Fc	hkl	d _{obs.}	d calc.	Fo	Fc
941) 853) 771)	1,149	1,149	1836	1938	10 6 2 8 8 4 }	0,9611 0,9475	0,9609 0,9475	2182 1754	1764 1511
933 755	1,143	1,143	1064	882	12 0 0 9 7 4 11 4 3		0.0410	10/7	
860)	1,137	1,137	2388	2397	981 1211)	0,9411	0,9410	1867	1775
942 861 764	1,131	1,131	1914	1937	12 2 0 11 5 2 10 7 1 10 5 5	0,9345	0,9346	2856	2789 1062
862) 1020)	1,115	1,115	3812	3914	10 6 4) 12 2 2)	0,9223	0,9222	3248	3080
1021) 854)	1,110	1,110	1769	1740					
1022) 666)	1,094	1,094	1708	1583					
1030) 863)	1,089	1,089	1097	919					
952 765)	1,084	1,084	1274	1128				- - -	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,070	1,070	1551	1 52 3					
$\begin{array}{c} 10 \ 4 \ 0 \\ 8 \ 6 \ 4 \end{array}$	1,056	1,056	3098	3189					
10 4 2	1,038	1,038	3624	3739					
873) 954) 1043)	1,029	1,029	1615	1373					
2 11 0 10 5 0 8 6 5	1,017	1,017	2023	1735					
1044 882	0,9895	0,9896	2768	2516					
10 5 3 9 7 2 11 3 2 7 7 6	0,9823	0,9822	1521	J 49 3					
10 6 0) 8 6 6)	0,9751	0,9750	2626	2651					
$ \begin{array}{c} 10 & 6 & 1 \\ 4 & 11 & 0 \\ 8 & 8 & 3 \end{array} $	0,9712	0,9714	1875	1545					

Tableau 2 (suite)

Tableau 3. Constantes cristallographiques de UTeO5, UTe3O9, 'UTe3O8' et TiTe3O8

	UTeO5	UTe ₃ O ₉	UTe ₃ O ₈ Gaines (1969)	TiTe ₃ O ₈ Galy & Meunier (1969, 1970)
Symétrie	orthorhombique	cubique	cubique	cubique
Paramètres	a = 5,363 Å b = 10,611 Å c = 7,862 Å	<i>a</i> =11,370 Å	11,371 Å	10,956 Å
Groupes spatiaux	<i>Pbcm</i> ou <i>Pbc</i> 2 ₁	Pa3	Pa3	Ia3
d_{exp}	6,91	6,84	6,57	5,64
d_x	6,91	6,91	6,76	5,65
Ζ	4	8	8	8

Composés	Formules envisagées	Configurations électroniques	Propriétés magnétiques	χ_g observé
	$\int U^{6+}Te^{4+}O_5$	$\begin{cases} U^{6+} : [Rn] \\ Te^{4+} : [Kr] 4d^{10} 5s^2 \end{cases}$	Diamagnétique	0,078. 10-6
UTeO5	U ⁵⁺ Te ⁵⁺ O ₅	$\begin{cases} U^{5+} : [Rn] 5f^1 \text{ ou } 6d^1 \\ Te^{5+} : [Kr] 4d^{10} 5s^1 \end{cases}$	Paramagnetique	
	U4+Te ⁶⁺ O ₅	$\begin{cases} U^{4+} : [Rn] 5f^2 \text{ ou } 5f^1 6d^1 \\ Te^{6+} : [Kr] 4d^{10} \end{cases}$	Paramagnétique	
	(U ⁶⁺ Te ₃ ⁴⁺ O ₉	$\begin{cases} U^{6+} : [Rn] \\ Te^{4+} : [Kr] 4d^{10} 5s^2 \end{cases}$	Diamagnétique	-0,019, 10-6
UTe ₃ O ₉	$\left\{ U^{4+}Te^{6+}Te_{2}^{4+}O_{9} \right\}$	$\begin{cases} U^{4+} : [Rn] 5f^2 \text{ ou } 5f^1 6d^1 \\ Te^{6+} : [Kr] 4d^{10} \\ Te^{4+} : [Kr] 4d^{10} 5s^2 \end{cases}$	Paramagnétique	
UTe ₃ O ₈	U ⁴⁺ Te ₃ ⁴⁺ O ₈	$\begin{cases} U^{4+} : [Rn] 5f^2 \text{ ou } 5f^1 6d^1 \\ Te^{4+} : [Kr] 4d^{10} 5s^2 \end{cases}$	Paramagnétique	

Tableau 4. Propriétés magnétiques des phases UTeO₅, UTe₃O₉ et 'UTe₃O₈' en fonction de leurs formulations

d'oxygène d'une atmosphère, la vitesse de chauffe était de 50°C.heure⁻¹. La Fig. 4 donne la courbe thermopondérale obtenue. Un premier palier I observé vers 300°C (accroissement de poids: 0,63%) correspond, aux erreurs d'expérience près, à la prise de poids qu'occasionne l'oxydation de UO_2 en U_3O_7 (% calc.: 0,71). Le palier II s'étend de 400° à 600°C, la prise de poids résultant de l'oxydation de U_3O_7 en U_3O_8 (% obs.: 1,33, % calc.: 1,42). Enfin le palier III, qui s'amorce vers 650°C, met en évidence l'oxydation totale de l'uranium(IV) en uranium(VI) avec formation de la phase UTe₃O₉ (acroissement de poids obs.: 1,95, calc.: 2,14%). Le spectre X d'un échantillon prélevé sur le palier III est bien celui de UTe₃O₉. Au-delà de 750°C la perte de poids enregistrée correspond à une réaction de décomposition de UTe₃O₉ avec formation de UTeO₅ et départ de TeO₂:

$$UTe_3O_9 \rightarrow UTeO_5 + 2TeO_2 \nearrow$$

Etude magnétique de UTeO₅ et UTe₃O₉. Confirmation des degrés d'oxydation de l'uranium et du tellure

Sur le plan formel, trois formules développées peuvent être envisagées pour UTeO₅: $U^{6+}Te^{4+}O_5$, $U^{5+}Te^{5+}O_5$ et $U^{4+}Te^{6+}O_5$ (bien que l'existence du tellure(V) soit pour le moins controversée et qu'il nous paraisse très difficile de l'envisager *a priori*). Les divers comportements magnétiques correspondant à ces possibilités sont donnés au Tableau 4 sur la base des répartitions électroniques.

Une mesure de susceptibilité magnétique effectuée à température ambiante à l'aide d'une balance magnétique mise au point au laboratoire par M. Pouchard donne une très faible valeur positive: $\chi_g = 0.78 \times 10^{-7}$ qui peut être attribuée à un faible paramagnétisme de réseau (alors que U⁴⁺O₂ par exemple comporte pour χ_g une valeur élevée: $\chi_g = 1.59 \times 10^{-5}$) (Dawson & Lister, 1952; Leask, Roberts, Walter & Wolf, 1963). UTeO₅ peut donc se formuler U⁶⁺Te⁴⁺O₅ comme l'avait proposé Khodadad. L'existence d'un groupement uranyle n'est toutefois aucunement prouvé pour le moment.

Pour UTe₃O₉ le diamagnétisme mis en évidence correspond à la formulation $U^{6+}Te_3^{4+}O_9$. UTe₃O₈, s'il existait, serait fortement paramagnétique. Ces résultats sont groupés au Tableau 4.

L'étude chimique, radiocristallographique et magnétique a donc permis d'isoler et de caractériser deux phases UTeO₅ ou $U^{6+}Te^{4+}O_5$ et UTe₃O₉ ou $U^{6+}Te_3^{4+}O_9$. Il apparait que le composé de formule UTe₃O₉ correspond à la cliffordite, dont la formule antérieurement proposée UTe₃O₈ est basée en fait sur des dosages d'uranium et de tellure portant sur des échantillons de cliffordite naturelle. Dans le Tableau 5, les

Fig. 5. Sous-réseaux cationiques dans $TiTe_3O_8$ et UTe_3O_9 (a'=a/2).

taux de U, Te et O au sein du produit naturel sont comparés à ceux calculés pour les formules UTe_3O_8 et UTe_3O_9 . Il ressort de ces calculs combien il est difficile

Fig. 6. Schéma représentant le mode d'insertion de l'atome d'oxygène O(5).

à partir de simples dosages d'uranium et de tellure, de trancher en faveur d'une des deux formules proposées. Seule une étude approfondie des systèmes UO_3 -TeO₂ et UO_2 -TeO₂ pouvait permettre d'attribuer à la cliffordite sa formule définitive.

Tableau	5.	<i>Composition</i>	en	pourcentage	des	phases
		UTe ₅ O ₈	et	UTe ₃ O ₉		

		• •	
	UTe ₃ O ₈ Gaines (1969)	UTe ₃ O ₈ Calc.	UTe ₃ O Calc.
U% Te%	24 ± 1 54 ± 1	31,8 51,1	31,1 50,0
O% par différence	22	17,1	18,9
Total	100	100,0	100,0

Etude structurale de UTe₃O₉

N'ayant pu obtenir de monocristaux de la phase UTe_3O_9 nous avons entrepris la détermination de la

Tableau 6. Positions atomiques comparées pour UTe₃O₈ et UTe₃O₉

		x	У	Z	В	Positions
	(U(1)	0	0	0		4(a)
	U(2)	į.	4	ł		4(b)
	Te	0.261	0,286	0,042		24(d)
UTe ₃ O ₈	{ O(1)	0,095	0,095	0,095		8(c)
5 0	0(2)	0,595	0,595	0,595		8(c)
	O(3)	0,174	0,422	0,091		24(<i>d</i>)
	O(4)	0,346	0,111	0,409		24(d)
		0	0	0	0,58 Ų	4(a)
	U(2)	4	Ļ	4	0,57	4(b)
	Te	0.2636	0,2845	0,Õ47₄	0,48	24(d)
	O(1)	0,178	0,408	0,092	0,33	24(d)
UTe ₃ O ₉	10(2)	0,348	0,106	0,419	0,48	24(d)
	O(3)	0,104	0,104	0,104	1,17	8(<i>c</i>)
	O(4)	0,600	0,600	0,600	0,47	8(c)
	O(5)	0.221	0.221	0,221	0,74	8(c)

Fig. 7. Projection de la structure de UTe₃O₉ sur le plan (001).

structure cristalline de cette phase à partir de diffractogramme X de poudre. Le rayonnement utilisé était celui d'une anticathode de cuivre (Cu $K\alpha$). 82 raies, bien isolées, d'indexation simple ou multiple correspondant finalement à 148 réflexions *hkl*, ont servi à cette étude.

Les facteurs de diffusion atomique de l'uranium, du tellure et de l'oxygène ont été tirés des données des *International Tables for X-ray Crystallography* (1965) ou interpolés à partir de celles-ci. Les calculs ont été effectués sur IBM 1130 à l'aide d'un programme mis au point par M. Saux & G. Perez (à paraître).

Hypothèses de départ

Nous nous sommes appuyés sur les résultats structuraux obtenus par Fischer *et al.* pour la phase formulée UTe₃O₈. Les coordonnées réduites des divers atomes annoncées par ces auteurs figurent au Tableau 6 (Fischer, Schlatti & Zemann, 1969). L'analogie des spectres X des phases UTe₃O₉ et TiTe₃O₈ permettait de supposer la présence de sous-réseaux cationiques très voisins. L'abaissement de la symétrie *Ia3* de TiTe₃O₈ à *Pa3* obtenu pour UTe₃O₉ impliquait cependant un dédoublement des positions attribuées à l'uranium (Fig. 5).

$TiTe_3O_8$ (Ia3)	UTe_3O_9 (Pa3)
8 Ti en position $8(a)$	4 U(1) en position $4(a)$
24 Te en position $24(d)$	4 U(2) en position $4(b)$
,	24 Te en position $24(d)$

Affinement de la structure de formulation UTe_3O_8 à l'aide de nos données

En affinant la structure de leur phase, Fischer *et al.* avaient obtenu un facteur de confiance R=0,12. Calculé à partir de nos propres mesure d'intensité et malgré l'utilisation d'un diffractogramme de poudre, ce facteur, obtenu avec les coordonnées réduites de Fischer, tombe à 0,096. Après plusieurs cycles d'affinement, la valeur de R est abaissée jusqu'à 0,078.

Affinement de la structure de UTe₃O₉

Nous avons en fait à placer 8 atomes d'oxygène supplémentaires dans la maille élémentaire de UTe_3O_8 afin d'aboutir à la formule UTe_3O_9 . L'examen de la répartition dans la maille des atomes déjà placés laisse apparaitre la possibilité d'insérer sur chaque axe A_3 un atome d'oxygène supplémentaire (Fig. 6). La distance U(1)-U(2) est en effet égale à 9,486 Å. Les atomes d'oxygène O(3) et O(17) occupent des positions 8(c) sur l'axe A_3 . Le calcul, à partir des rayons ioniques donnés par Ahrens (1952), montre qu'il reste un espace suffisant pour insérer le troisième atome d'oxygène O(5) sur l'axe A_3 (MN=2,65 Å). La position cristallographique de cet atome d'oxygène comporte 8 équivalents et conduit donc à la formule souhaitée, soit UTe₃O₉.

Fig 8. Environnement de l'uranium.

Tableau	7.	Distances	interatomia	jues et	angle	es O	-Te-	-0 de	UTe ₃ O ₉
---------	----	-----------	-------------	---------	-------	------	------	-------	---------------------------------

Distances interatomiques (erreur maximum ± 0.04 Å)

U(1)-O(3)	2,04 Å	U(2)–O(4)	1,96 Å	Te-O(15)	1,78 Ă
U(1) - O(10)	2,04	U(2)-O(17)	1,96	Te-O(16)	2,02
U(1)-O(6)	2,30	U(2)–O(18)	2,51	Te-O(2)	2,15
U(1) - O(7)	2,30	U(2)–O(19)	2,51	Te-O(24)	2,16
U(1)-O(8)	2,30	U(2) - O(20)	2,51	Te-O(13)	2,55
U(1)-O(9)	2,30	U(2) - O(21)	2,51	Te-O(14)	2,82
U(1) - O(11)	2,30	U(2) - O(22)	2,51		
U(1)-O(12)	2,30	U(2)–O(23)	2,51		

Angles de liaisons principaux O-Te-O (erreur maximum $\pm 2,0^{\circ}$)

O(15)-Te-O(16)	95,80°	:	O(2)-Te-O(24)	156,60°
-()(,			

Après quelques cycles d'affinement, le facteur de confiance est abaissé de manière sensible: R=0,064 pour UTe₃O₉ au lieu de R=0,078 pour la formulation UTe₃O₈. Les coordonnées réduites et le facteur d'agitation thermique isotrope des atomes sont donnés au Tableau 6. Les distances interatomiques figurent au Tableau 7 et les facteurs de structure observés et calculés au Tableau 2.

Description de la structure

La Fig. 7 représente la projection de la structure de UTe_3O_9 sur le plan (001).

Les atomes d'uranium U(1) et U(2) possèdent chacun le même type d'environnement oxygéné avec une coordinence 8. Chaque uranium forme un groupement linéaire UO_2^{2+} avec deux atomes d'oxygène voisins

Fig. 9. Environnement du tellure.

Fig. 10. Enchaînement des polyèdres oxygénés de l'uranium et du tellure dans les plans de cote z=0 et $\frac{1}{2}$.

Fig. 11. Enchaînement des polyèdres oxygénés du tellure dans les plans de cote $z = \frac{1}{4}$ et $\frac{3}{4}$.

[2(U(1)–O)=2,04 Å; 2(U(2)–O)=1,96 Å]. Ce groupement n'est autre que le groupement uranyle. Les six autres atomes d'oxygène forment autour de lui un octaèdre aplati [6(U(1)–O)=2,30 Å; 6(U(2)–O=2,51 Å] (Fig. 8). Cet environnement de l'uranium est en tout point comparable avec celui existant dans l'oxyde α -UO₃ [2(U–O)=1,90; 6(U–O)=2,30 Å] (Zachariasen, 1948) ou le fluorure d'uranyle UO₂F₂ [2(U–O)=1,91; 6(U–F)=2,50 Å]. (Zachariasen, 1948).

Le polyédre, formé par les atomes d'oxygene parti cipant à l'environnement du tellure peut être assimilé à un tétraèdre distordu, les quatre distances Te-O variant de 1,78 à 2,16 Å. Notons la présence de deux autres atomes d'oxygène nettement plus éloignés (à 2,55 et 2,82 Å) (Fig. 9).

L'atome de tellure est extérieur au tètraédre oxygéné. Ce type d'environnement particulier se retrouve dans la littérature qui rapporte en effet les types suivants: coordinence 3, le tellure étant placé au dessus d'un triangle oxygéné, et coordinence 4, le tellure se trouvant au-dessus d'un plan plus ou moins distordu formé par quatre atomes d'oxygène (Zemann, 1968; Bayer, 1969). Notons que le 9ème atome d'oxygène est inséré à l'intérieur d'un tétraèdre de tellure fortement distordu. Il se trouve à égale distance des atomes de tellure formant la base de ce tétraèdre O-Te=2,16 Å; le 4ème atome de tellure, au sommet du tétraèdre, étant nettement plus éloigné (O-Te=3,74 Å).

L'influence du doublet non engagé du tellure est nettement moins sensible dans cette structure qu'au sein de TiTe₃O₈.

Dans le réseau de UTe₃O₉, on observe la même alternance de plans cationiques [U+Te] et [Te] que dans les réseaux de formule MTe₃O₈. La Fig. 10 représente une coupe de la structure à la cote $z=\frac{1}{2}$ avec la succession de polyèdres de coordinence de l'uranium et du tellure. La Fig. 11, qui est une coupe du réseau à la cote $z=\frac{1}{4}$, illustre la disposition des 'tétraèdres oxygénés' liés au tellure.

Conclusions

L'étude structurale de la phase UTe_3O_9 effectuée sur spectre de poudre confirme donc partiellement les résultats de Fischer, Schlatti & Zemann basés sur la formulation UTe_3O_8 . Mais l'introduction d'un neuvième atome d'oxygène mise en évidence par l'étude chimique et magnétique s'avère indispensable pour mener à bien l'affinement de la structure. On ne saurait douter dans ces conditions que la cliffordite ne répond pas à la formule UTe_3O_8 , mais possède en réalité la composition UTe_3O_9 .

Références

AHRENS, L. H. (1952). Geochim. Cosmochim. Acta, 2, 155. ASPREY, L. B., CUNNINGHAM, B. B. & COTTON, A. (1960). Progress in Inorganic Chemistry, 2, 289.

- BAYER, G. (1969). Fortschr. Min. 46 (1), 41.
- DAWSON, J. K. & LISTER, B. A. J. (1952). J. Chem. Soc. p. 5041.
- FISCHER, R., SCHLATTI, M. & ZEMANN, J. (1969). Naturwissenschaften, 93, 1.
- GAINES, R. V. (1969). Amer. Min. 54, 697.
- GALY, J. & MEUNIER, G. (1969). C. R. Acad. Sci., Paris, 268, 1249.
- International Tables for X-ray Crystallography (1965). Vol. III. Birmingham: Kynoch Press.
- KHODADAD, P. (1962). C. R. Acad. Sci., Paris, 255, 1617.
- LEASK, J. M., ROBERTS, L. E. J., WALTER, A. J. & WOLF, W. P. (1963). J. Chem. Soc. p. 4788.
- MEUNIER, G. & GALY, J. (1971). Acta Cryst. B27, 602.
- PEREZ, G. & SAUX, M., Bull. Soc. Chim. Fr., en cours de parution.
- PERIO, P. (1955). Thèse, Paris.
- ZACHARIASEN, W. H. (1948). Acta Cryst. 1, 265, 277.
- ZEMANN, J. (1968). Z. Kristallogr. 127, 319.

Acta Cryst. (1971). B27, 616

Die Kristallstruktur von α-Li₅GaO₄*

VON F. STEWNER UND R. HOPPE

Institut für Anorganische und Analytische Chemie der Universität Giessen, Giessen, Deutschland

(Eingegangen am 9. Februar 1970 und wiedereingereicht am 25. Mai 1970)

 α -Li₅GaO₄ is orthorhombic with a=9.173, b=9.094, $c=9.202\pm0.003$ Å, Z=8, space group *Pbca*. The structure, which has been refined by least squares with 354 *hkl*, is a superstructure of Li₂O with 'isolated' GaO₄ groups and vacancies in the cation lattice.

Es ist interessant und überrascht, dass im System Li₂O/Ga₂O₃ neben LiGaO₂, das Ivanov-Emin & Rovik (1947) aus LiGa(OH)₄ und Hoppe & Sprenger (1959) einkristallin aus Li₂O/Ga₂O₃-Gemengen erhielten und das von Marezio (1965) vollständig aufgeklärt wurde, nicht Li₃GaO₃, wohl aber Li₅GaO₄ existiert. Nach Blasse (1964) soll Li₅GaO₄ gemäss Li₅□₂GaO₄ eine tetragonale Ordnungsvariante des Li₂O-Typs mit a=6.50 und c=9.01 Å sein. Da der auf Pulverdaten beruhende Strukturvorschlag von Blasse (1964) elektrostatisch unwahrscheinlich ist, erschien eine Neuuntersuchung des Systems Li₂O/Ga₂O₃ wünschenswert. Dies umso mehr, als wir seit einiger Zeit 'Kationen-reiche' Oxide $(A_x B_y O_z \text{ mit } x + y > z)$ systematisch untersuchen (Hoppe, 1967) und Stewner & Hoppe (1970) am Beispiel von Li₃InO₃, Li₃₁In₁₁O₃₂ etc. besonders interessante Verbindungen dieser Art am Nachbarsystem Li₂O/In₂O₃ untersucht haben. Es zeigt sich, dass Li₅GaO₄ dimorph ($\alpha \stackrel{700^{\circ}C}{\rightleftharpoons} \beta$) ist. Wir erhielten von beiden Modifikationen Einkristalle (Stewner & Hoppe, 1968).

Innige Gemenge von Li₂O und 'aktivem' α -Ga₂O₃ wurden im Bereich Li:Ga=1:1 bis 6:1 erhitzt. Nach Ausweis der Guinieraufnahmen tritt neben LiGaO₂ eine zweite Phase auf, die nur dann rein erhalten wurde, wenn im Gemenge Li:Ga>5:1 war. Die Aufnahmen zeigten weiterhin, dass diese Verbindung in zwei Modifikationen auftritt; der Umwandlungspunkt liegt bei 700 °C (DTA).

Einkristalle von α -Li₅GaO₄ erhielt man aus dem Pulver (48h, 700 °C, Ni-Bömbchen) analog wie bei Li₃InO₃ (Stewner & Hoppe, 1970). Identität von Pulver und Einkristall wird durch die Übereinstimmung der Pulverdaten bei der Intensitätsrechnung mit den Parametern der Einkristalldaten belegt.

Abmessungen der Elementarzelle, Raumgruppe

Drehkristall-, Weissenberg- und Precessionsaufnahmen zeigen, dass α -Li₅GaO₄ orthorhombisch mit

$$a = 9,173, b = 9,094, c = 9,202 \pm 0,003$$
 Å

616

Zur Versuchsführung, Darstellung der Proben

^{*} Teil der Dissertation Stewner, F. D26 Giessen, 1969.